

1	COVID-19 lockdown induced changes in NO2 levels across India observed
2	by multi-satellite and surface observations
3	Akash Biswal ^{1,2} , Vikas Singh ^{1*} , Shweta Singh ¹ , Amit P. Kesarkar ¹ , Khaiwal Ravindra ³ ,
4	Ranjeet S. Sokhi ⁴ , Martyn P. Chipperfield ^{5,6} , Sandip S. Dhomse ^{5,6} , Richard J. Pope ^{5,6} , Tanbir
5	Singh ² , Suman Mor ²
6	
7	1. National Atmospheric Research Laboratory, Gadanki, AP, India
8	2. Department of Environment Studies, Panjab University, Chandigarh 160014, India
9 10	3. Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
11 12	4. Centre for Atmospheric and Climate Physics Research (CACP), University of Hertfordshire, Hatfield, UK
13	5. School of Earth and Environment, University of Leeds, Leeds, UK
14	6. National Centre for Earth Observation, University of Leeds, Leeds, UK
15	*Correspondence to: Vikas Singh (vikas@narl.gov.in)
16	Abstract
17	We have estimated the spatial changes in NO ₂ levels over different regions of India during the
18	COVID-19 lockdown (25th March - 3rd May 2020) using the satellite-based tropospheric
19	column NO_2 observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric
20	Monitoring Instrument (TROPOMI), as well as surface NO ₂ concentrations obtained from the
21	Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO_2
22	levels was observed across India during the lockdown compared to the same period during
23	previous business-as-usual years, except for some regions that were influenced by anomalous
24	fires in 2020. The reduction (negative change) over the urban agglomerations was substantial
25	(~20-40 %) and directly proportional to the urban size and population density. Rural regions
26	across India also experienced lower NO $_2$ values by ~15-25 %. Localised enhancement of NO $_2$
27	associated with isolated emission increase scattered across India, were also detected. Observed
28	percentage changes in satellite and surface observations were consistent across most regions
29	and cities, but the surface observations were subject to larger variability depending on their

- proximity to the local emission sources. Observations also indicate NO₂ enhancements of up to ~ 25 % during the lockdown associated with fire emissions over the north-east, and some parts of central regions. In addition, the cities located near the large fire emission sources show much smaller NO₂ reduction than other urban areas as the decrease at the surface was masked by enhancement in NO2 due to the transport of the fire emissions.
- 35 Keywords: OMI, TROPOMI, CPCB, Emission reduction, Air quality, ISRO LULC

36 1 Introduction

37 Nitrogen oxides NO_x (NO+NO₂) are one of the major air pollutants, as defined by various national environmental agencies across the world, due to its adverse impact on human health 38 39 (e.g. Mills et al., 2015). Furthermore, tropospheric levels of NO_x can affect tropospheric ozone formation (Monks et al., 2015), contribute to the secondary aerosol formation (Lane et al., 40 2008), acid deposition, and impact climatic cycles (Lin et al., 2015). The major anthropogenic 41 sources of NO_x emissions include the combustion of fossil fuels in road transport, aviation, 42 shipping, industries, and thermal power plants (e.g. USEPA, 1999; Ghude et al., 2013; Hilboll 43 et al., 2017). Other sources include open biomass burning (OBB), mainly large-scale forest 44 fires (e.g. Hilboll et al., 2017), lightning (e.g. Solomon et al., 2007) and emissions from soil 45 46 (e.g. Ghude et al., 2010). NO_x hotspots are often observed over thermal power plants, industries and urban areas with large traffic volumes causing larger localised emissions (e.g. Prasad et 47 48 al., 2012; Hilboll et al., 2013; Ghude et al., 2013).

49 With growing scientific awareness of the adverse impacts of air pollution, the number of air quality monitoring stations has expanded to over 10,000 across the globe (Venter et al., 2020). 50 51 Additionally, multiple missions including the Global Ozone Monitoring Instrument (GOME) on ERS-2, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 52 53 (SCIAMACHY, 2002-2012) on Envisat, the Ozone Monitoring Instrument (OMI, 2005present) on Aura, GOME-2 (2007-present) on MetOp and the TROPOspheric Monitoring 54 55 Instrument (TROPOMI, 2017-present) on Sentinel-5P (S5P) have monitored NO₂ pollution from the space for over two decades. Surface sites typically measure NO2 in concentration 56 quantities (e.g. µg m⁻³), but satellite NO₂ measurements are retrieved as integrated vertical 57 columns (e.g. tropospheric vertical column density, VCD_{trop}). The latter is preferred to study 58 NO₂ trends and variabilities because of global spatial coverage, and spatio-temporal similarity 59 60 with ground-based measurements (Martin et al., 2006; Kramer et al., 2008; Weing et al., 2008; Lamsal et al., 2010; Ghude et al., 2011). NO₂ has been reported to increase in south Asian 61

countries (Duncan et al., 2016; Hilboll et al., 2017; ul-Haq et al., 2017), decrease over Europe 62 63 (van der A et al., 2008; Curier et al., 2014; Georgoulias et al., 2019) and the United States (Russell et al., 2012; Lamsal et al., 2015). In the case of India, tropospheric NO₂ increased 64 65 during the 2000s (Mahajan et al., 2015; Hilboll et al., 2017), but since 2012 it has either 66 stabilized or even declined owing to the combined effect of economic slowdown and adaptation of cleaner technology (Hilboll et al., 2017). However, thermal power plants, megacities, large 67 urban areas and industrial regions remain the NO₂ emission hotspots (Ghude et al., 2008, 2013; 68 69 Prasad et al., 2012; Hilboll et al., 2013; Duncan et al., 2016; Hilboll et al., 2017). Moreover, 70 despite the measures taken to control NO_x emissions, urban areas often exceed national ambient air quality standards in India (Sharma et al., 2013; Nori-Sarma et al., 2020; Hama et al., 2020), 71 72 and thus require a detailed scenario analysis.

73 The nationwide lockdown in various countries during March-May 2020 due to the outbreak of 74 COVID-19 reduced the traffic and industrial activities leading to a significant reduction of 75 NO₂. Studies using space-based and surface observations of NO₂ have reported reductions in the range of ~30-60 % for China, South Korea, Malaysia, Western Europe, and the U.S. 76 77 (Bauwens et al., 2020; Kanniah et al., 2020; Muhammad et al., 2020; Tobías et al., 2020; 78 Dutheil et al., 2020; Liu et al., 2020; Huang and Sun 2020; Naeger and Murphy 2020; NASA, 79 2020), with the reductions observed strongly linked to the restrictions imposed on vehicular movement. The lockdown in India was implemented in various phases starting on the 25th 80 March 2020 (MHA, 2020; Singh et al., 2020). The lockdown restrictions in the first two phases 81 (Phase 1: 25th March - 14th April 2020 and Phase 2: 15th April to -3rd May 2020) were the 82 strictest, during which all non-essential services and offices were closed and the movement of 83 the people was restricted, resulting in a large reduction in the anthropogenic emissions. The 84 restrictions were relaxed in a phased manner from the third phase onwards in less affected areas 85 by permitting activities and partial movement of people (MHA, 2020). 86

A decline in NO₂ levels over India during the lockdown has been reported from both surface 87 observations (Singh et al., 2020; Sharma et al., 2020; Mahato et al., 2020), as well as satellite 88 observations (ESA, 2020; Biswal et al., 2020; Siddiqui et al., 2020; Pathakoti et al., 2020). A 89 90 detailed study by Singh et al. (2020) based on 134 sites across India reported a decline of ~30-70 % in NO₂ with a larger reduction observed during peak morning traffic hours and late 91 evening hours. While Sharma et al. (2020) reported a lesser decrease (18 %) in NO₂ for selected 92 sites, Mahato et al., (2020) found a decrease of over 50 % in Delhi for the first phase of 93 94 lockdown which was also confirmed by Singh et al. (2020) for the extended period of analysis.

The satellite-based studies by Biswal et al. (2020) and Pathakoti et al. (2020) estimated the 95 change in NO₂ levels using OMI observations whereas Siddiqui et al. (2020) utilised 96 97 TROPOMI to compute the change over eight major urban centres of India. Biswal et al. (2020) 98 reported that average OMI NO₂ over India decreased by 12.7 %, 13.7 %, 15.9 %, and 6.1 % 99 during the subsequent weeks of the lockdown. Similarly, Pathakoti et al. (2020) reported a decrease of 17 % in average OMI NO₂ over India as compared to the pre-lockdown period and 100 101 a decrease of 18 % against the previous 5-year average. Moreover, both the study reported a 102 larger reduction of over 50 % over Delhi. Similarly, Siddiqui et al. (2020) also reported an 103 average reduction of 46 % in the eight cities during the first lockdown phase with respect to 104 the pre-lockdown phase. While recent studies have utilized either only satellite observations or 105 only surface observations, this study goes further by adopting an integrated approach by 106 combining both measurement types to investigate NO₂ level changes over India in response to the COVID-19 pandemic using OMI, TROPOMI and surface observations over different 107 regions. As both OMI and TROPOMI have similar local overpass times of approximately 13:30 108 (Penn and Holloway, 2020; van Geffen et al., 2020), diurnal influences on the retrievals of NO₂ 109 for both instruments are similar. Moreover, as both instruments use similar retrieval schemes, 110 111 their NO_2 measurements should be comparable with a suitable degree of confidence (van Geffen et al., 2020; Wang et al., 2020). We estimate the changes in the NO₂ levels over different 112 113 land-use categories and urban sizes. In addition to this, we investigate the spatial agreement 114 between population density and NO₂ spatial variability observed at the surface. A key benefit of this study will be to understand and assess the impact of reduced anthropogenic activity on 115 116 NO₂ from the satellite and surface observations. This study thus provides an improved understanding of the spatial variations of tropospheric NO₂ for future air quality management 117 118 in India.

119 2 Data and methodology

120 2.1 Data

Satellite observations of VCD_{trop} NO₂ were obtained from OMI (2016-2020) and TROPOMI (2019-2020). Surface NO₂ observations (2016-2020) at 139 sites across India were from the Central Pollution Control Board (CPCB). The period from 25th March to 3rd May each year is defined as the analysis period. Average NO₂ levels during the analysis period in 2020 and previous years are referred to as lockdown (LDN) NO₂ and business as usual (BAU) NO₂,

- respectively. The BAU years for OMI and CPCB are 2016-2019 whereas for TROPOMI the
- 127 BAU year is 2019 because of the unavailability of earlier observations.
- 128 NO₂ data were analysed for six geographical regions (north, Indo Gangetic Plain (IGP), north-
- 129 west, north-east, central and south) of India (supplementary Fig. S1). The NO₂ changes over
- 130 various land-use categories (i.e. urban, cropland and forestland) have been analysed using
- spatially collocated land-use land cover (LULC) data (NRSC, 2012) and OMI and TROPOMI
- $132 \quad observed \ VCD_{trop} \ NO_2. \ Visible \ Infrared \ Imaging \ Radiometer \ Suite \ (VIIRS) \ fire \ count \ data \ was$
- used to study the fire anomalies during the LDN and other analysis periods.

134 2.1.1 OMI NO₂

OMI has a nadir footprint of approximately $13 \text{ km} \times 24 \text{ km}$ measuring in the ultraviolet-visible 135 (UV-Vis) spectral range of 270-500 nm (Boersma et al., 2011). It uses differential optical 136 absorption spectroscopy (DOAS) to retrieve VCD_{trop} (i.e. VCD_{trop} is the difference between the 137 total and stratospheric slant columns divided by the tropospheric air mass factor; (Boersma et 138 al., 2004). Here, we use the OMI NO2 30 % Cloud-Screened Tropospheric Column L3 Global 139 140 Gridded (Version 3) at a $0.25^{\circ} \times 0.25^{\circ}$ spatial grid from the NASA Goddard Earth Sciences Center (GESDISC) 141 Data and Information Services available at (https://giovanni.gsfc.nasa.gov/giovanni/). Details of the retrieval scheme and OMI standard 142 product (Version 3) are discussed by e.g. Celarier et al., (2008) and Krotkov et al., (2017). 143

144 2.1.2 TROPOMI NO₂

145 TROPOMI has a nadir-viewing spectral range of 270–500 nm (UV-Vis), 675–775 nm (near-146 infrared, NIR) and 2305-2385 nm (short wave-infrared, SWIR). In the UV-Vis and NIR 147 wavelengths, TROPOMI has an unparalleled spatial footprint of $3.5 \text{ km} \times 7.0 \text{ km}$, along with $7 \text{ km} \times 7 \text{ km}$ in the SWIR (Veefkind et al., 2012). Details of the TROPOMI scheme and data 148 149 are discussed by Eskes et al. (2019) and Van Geffen et al. (2019). The time-averaged VCD_{trop} NO_2 over India for the analysis period was obtained at 10 km \times 10 km resolution from the 150 151 Google earth-engine (https://developers.google.com/earthengine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO₂). The source data are filtered to 152 remove pixels with QA (Quality Assurance) values less than 75 % which removes cloud-153 covered scenes, part of the scenes covered by snow/ice, errors and problematic retrievals (Eskes 154 et al., 2019). 155

156 **2.1.3** Surface NO₂ concentration

The hourly averaged surface NO₂ concentration at 139 sites (Fig. S1) for 2016-2020 across India was acquired from the CPCB CAAQMS (Continuous Ambient Air Quality Monitoring Stations) portal (<u>https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing</u>). The data was further quality controlled by removing the outliers, constant values, and sites having less than 60 % data during the analysis period. Details of the surface observations are explained in Singh et al. (2020).

163 2.1.4 Land use land cover data

164 The high-resolution (50 m \times 50 m) LULC data mapped with level-III classification for 18 major categories (NRSC, 2012) was obtained from the BHUVAN geo-platform (https://bhuvan-165 app1.nrsc.gov.in/thematic/thematic/index.php) of the Indian Space Research Organisation 166 167 (ISRO). To quantify the changes over urban, crop and forest areas, the OMI and TROPOMI NO₂ at urban grids (category 1), cropland (category 2 to 5) and forestland (category 7 to 10) 168 169 were extracted for further analysis. In order to match the OMI and TROPOMI grid resolution with the Indian LULC, the dominant LULC was considered within the OMI and TROPOMI 170 171 grid. Supplementary Fig. S2 shows the high-resolution LULC data used in this study for cropland, forestland, and urban areas separately. Urban areas were further divided into four 172 sizes as 10-50 km², 50-100 km², 100-200 km² and greater than 200 km² to study the change in 173 NO₂ with respect to the size of the urban agglomeration. 174

175 2.1.5 VIIRS fire counts

176 The VIIRS aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides daily global fire count at a 375 m \times 375 m spatial resolution (Schroeder et al., 2014; Li et al., 177 178 2018). The fire count data over India during the analysis period from 2016 to 2020 was obtained from the FIRMS (Fire Information for Resource Management System) web portal 179 180 (https://firms.modaps.eosdis.nasa.gov/download/). The fire count data was gridded at 10 km × 10 km for each year by summing of fire counts falling on each spatially overlapping grid. The 181 182 burnt area was calculated from the fire counts by multiplying with the VIIRS grid size (Prosperi 183 et al., 2020).

184 2.1.6 Population data

The gridded population density (people per hectare, pph) data for 2020 has been taken from
Worldpop (2017). Worldpop estimates the population density at approximately 100 m × 100 m
(near equator) by disaggregating census data for population mapping using random forest

- estimation technique using remotely sensed and ancillary data. Details of the pollution mapping
- 189 methodology can be found in Stevens et al. (2015).

190 2.2 Analysis methodology

The change in the NO₂ levels for each analysis period has been calculated by subtracting the BAU NO₂ from LDN NO₂. We calculate the percentage change (D) using the following equation

$$D = \frac{(LDN - BAU)}{BAU} \times 100$$

The analysis was done over the whole of India as well as over the separate considered regionsand selected LULC categories using open-source Geographic Information System (QGIS).

197 **3 Result and Discussion**

198 **3.1** Fire count anomalies during the lockdown

199 It is well known that meteorological factors (e.g. wind, temperature, radiation etc) can affect 200 the NO_2 concentration as well as biogenic emissions (Guenther et al., 2012). In the case of the present study, recent work (e.g. Singh et al., 2020; Navinya et al., 2020; Sharma et al., 2020) 201 202 has shown that meteorological conditions remained relatively consistent over recent years 203 during the dates of the lockdown period. Therefore, we assume that the changes observed 204 during the lockdown were due to the change in the emissions. Moreover, we have assumed no change in biogenic emissions because of similar meteorological conditions during the 205 206 lockdown period. Long-term satellite-derived fire counts suggest that Indian fire activities 207 typically peak during March-May (Sahu et al., 2015), predominantly over the north, central 208 and north-east regions (Venkataraman et al., 2006; Ghude et al., 2013). However, the spatial and temporal distribution of fire events is largely heterogeneous (Sahu et al., 2015) meaning 209 an abrupt increase or decrease in fire activity could have a significant impact on NO₂ levels 210 over anomalous regions during the lockdown. 211

An investigation of fire counts during the 2020 lockdown (LDN analysis period), when compared with the corresponding 2016-2020 average, highlights a substantial decrease over the eastern part of central India and an increase over the western part of central India and northeast. In Fig. 1a widespread fire activity (counts of 10-50) is shown across India such as the central region (Madhya Pradesh, Chhattisgarh, Odisha), parts of Andhra Pradesh, the Western Ghats in Maharashtra and north-east region (Assam, Meghalaya, Tripura, Mizoram and

Manipur). The fire anomaly during the lockdown (Fig. 1b) shows positive fire counts (5-20)
over the north-east region, west of Madhya Pradesh in central India and scattered locations in
South India. The negative fire anomalies (-20 to -5) observed over the central region
(Chhattisgarh and Odisha) suggests a decrease in fire activity during the 2020 lockdown period.
To minimise the impact of fire emission in our analysis, we have considered the grids with zero
fire anomaly to assess the changes in NO₂ during the lockdown.

224

Fig. 1 Spatial distribution of the 10 km \times 10 km gridded VIIRS fire counts. (a) Average fire counts during the analysis period (March 25th - May 3rd, 2016-2020). (b) Gridded fire anomaly during the lockdown in 2020.

228 3.2 VCD_{trop} NO₂ over India during lockdown period

229 The spatial distribution of VCD_{trop} NO₂ is largely determined by local emission sources; therefore NO₂ hotspots are found over urban regions, thermal power plants and major industrial 230 corridors. For the Indian subcontinent, maximum NO2 is observed during winter to pre-231 232 monsoon (Dec-May) and minimum NO₂ during the monsoon (Jun-Sep). Region-specific peaks such as the winter-time peak (Dec-Jan) in the IGP is associated with anthropogenic emissions, 233 234 or the summer-time peak (Mar-Apr) in central India and north-east India is associated with 235 enhanced biomass burning activities (Ghude et al., 2008; Ghude et al., 2013; Hilboll et al., 236 2017).

238 Fig. 2 Spatial distribution of mean $VCD_{trop} NO_2$ (molecules cm⁻²) during the analysis period

239 (25th March - 3rd May) for (a) OMI NO₂ during business as usual (BAU, 2016-2019), (b) OMI

240 NO₂ during the lockdown (LDN, 2020), (c) TROPOMI NO₂ during BAU (2019) and, (d)

²⁴¹ TROPOMI NO₂ during LDN (2020).

We compare the LDN mean VCD_{trop} NO₂ with the BAU mean for OMI and TROPOMI. The 242 spatial distribution of the BAU and LDN VCD_{trop} NO₂ observed by OMI and TROPOMI is 243 shown in Fig. 2 (a-d). The mean VCD_{trop} NO₂ from the two instruments show similar spatial 244 distributions during the analysis period for both LND and BAU. In BAU years, the NO₂ 245 hotspots are seen over the large fossil-fuel-based thermal power plants (~ 1000×10^{13} molecules 246 cm⁻²), urban areas (~400-700 ×10¹³ molecules cm⁻²) and industrial areas. Scattered sources are 247 248 also present in western India, covering the industrial corridor of Gujarat and Mumbai, various 249 locations of south India, and densely populated areas (e.g. IGP). The spatial distribution shows significant changes during the lockdown in 2020. The details of actual and percentage changes 250 251 are discussed in the subsequent sections.

252 3.3 Changes observed by OMI and TROPOMI

There is a substantial reduction in VCD_{trop} NO₂ between the LDN and BAU (Fig. 3a & c). A 253 large reduction in the number of hotspots, mainly urban areas, is seen in both OMI and 254 255 TROPOMI observations. However, hotspots due to coal-based power plants remain during the lockdown as electricity production was continued. Over the NO2 hotspots, there has been an 256 absolute decrease of over 150 $\times 10^{13}$ molecules cm⁻² (~250 $\times 10^{13}$ molecules cm⁻² over 257 megacities) detected by both OMI and TROPOMI. Background VCD_{trop} NO₂ has typically 258 reduced by approximately $30-100 \times 10^{13}$ molecules cm⁻² representing a percentage decrease of 259 260 30-50 % (OMI) and 20-30 % (TROPOMI) in rural regions (Fig. 3b & d). For urban regions, 261 both OMI and TROPOMI see a decrease of approximately 50 %, but reductions in smaller urban areas are clearly noticeable in the TROPOMI data, given its better spatial resolution. 262 263 Both instruments observe an increase in VCD_{trop} NO₂ in the north-eastern regions and moderate 264 enhancement over the western and central regions. These enhancements are linked with the 265 biomass burning activities during this period (Fig. 1).

266

268

Fig. 3 (a, c) Absolute change and (b, d) percentage change in VCD_{trop} NO₂ during the analysis
period for LDN year compared to BAU years as observed by OMI (left panels) and TROPOMI
(right panels).

273 **3.4** The change observed over different land use

274 Anthropogenic NO_x emissions are typically more localised in urban and industrial centres, while biogenic sources (e.g. soil) are more important in rural regions. OBB activities peak in 275 276 March-April (Sahu et al., 2015) and represent more sporadic sources. As the lockdown is 277 expected to have reduced urban anthropogenic NOx sources (as shown in Fig. 3), it is important to assess the lockdown impact over the rural regions such as cropland and forestland as well.. 278 In this section, we estimate the changes in VCD_{trop} NO₂ over different land-types such as 279 cropland, forestland, and urban areas (Fig. S2). To minimise the impact of OBB emissions in 280 our analysis, we exclude grids with fire anomalies (Fig. 1) and those containing thermal power 281 plants (Fig. S2d). However, absolute separation is not possible due to regional, and long-range 282 283 transportation from nearby grids.

284 3.4.1 Changes over cropland and forestland

285 The changes in VCD_{trop} NO₂ observed by OMI and TROPOMI over the cropland (Fig. S2a) in different regions of India are shown in Fig. 4a & 4b and Table S1. A decline in VCD_{trop} NO₂ 286 287 has been observed over croplands in all regions except for the north-east. A higher percentage decline was observed over IGP and south regions by both the satellites. While VCD_{trop} NO₂ 288 has decreased, prominent enhancements have been observed over the north-east and few grids 289 in central and north-west regions. These enhancements can be attributed to the impact of nearby 290 forest grids (Fig. 1). The observed changes over the forestland (Fig. 2.c) over different regions 291 292 of India have been shown in Fig. 4(c, d) and Table S1. The average VCD_{trop} NO₂ has declined over forestland in all the regions except for the north-east where VCD_{trop} NO₂ was enhanced 293 294 due to the positive fire anomaly (Fig. 1) during the analysis period. It can be noted that although we have taken the grids with zero fire anomaly, the effect of a nearby grid exhibiting positive 295 fire anomaly cannot be ignored due to atmospheric dispersion and mixing. The inter-296 297 comparison of the changes observed by two satellites suggests that OMI data indicates a larger 298 reduction in VCD_{trop} NO₂ than TROPOMI in most of the regions.

Fig. 4 Observed change in VCD_{trop} NO₂ between LDN and BAU from OMI and TROPOMI for 301 different regions shown as (a) violin plot of the absolute change over cropland, (b) percentage 302 303 change over cropland, (c) violin plot of the absolute change over forestland, and (d) percentage 304 change over forestland. A violin plot is a combination of a box plot and a kernel density 305 estimation (KDE) plot. KDE is a non-parametric way to estimate the probability density 306 function (PDF). The red lines in the violin plot show the interquartile range; the blue line shows the median value; the yellow star shows the mean value. The vertical lines in the bar 307 plot show the standard deviation The abbreviations NWest and NEast are for north-west and 308 309 north-east regions, respectively.

310

311 **3.4.2** Changes over urban regions

312 Next, we analysed the changes in VCD_{trop} NO₂ over the urban areas (Fig. S2b) in different regions of India. The calculated actual and percentage changes observed by OMI and 313 314 TROPOMI are shown in Fig. 5 and in Table S1. The mean changes observed by OMI (in units $\times 10^{13}$ molecules cm⁻² (and %)) were -54 ± 48 (-22 ± 11 %) for the central region, -33 ± 26 (-315 14 ± 11 %) for the north-west, -110 ± 44 (30 ± 10 %) for IGP, -55 ± 37 (-25 ± 13 %) for the 316 south, -92 ± 37 ($-28 \pm 6\%$) for the north and 3 ± 28 ($2 \pm 16\%$) for the north-east. Similarly, the 317 mean changes observed by TROPOMI (in the same units) were -65 ± 63 (-22 ± 15 %) for the 318 319 central region, $-74 \pm 56 (-26 \pm 14 \%)$ for the north-west, $-68 \pm 46 (-23 \pm 13 \%)$ for IGP, -67 ± 10^{-10} 49 (-26 \pm 11 %) for the south, -43 \pm 17 (-23 \pm 8 %) for the north and 20 \pm 19 (16 \pm 15 %) for 320 the north-east. The changes observed over urban areas are larger than those observed over the 321 forest and croplands. In contrast to the cropland and forestland, TROPOMI observed a larger 322 reduction in VCD_{trop} NO₂ than OMI in most of the regions. Densely populated IGP with the 323 324 largest urban agglomeration shows the maximum change in VCD_{trop} NO₂ followed by the 325 central and north-west regions. The VCD_{trop} NO₂ over the urban areas in the north-east region

326 is likely to be influenced by the nearby forest fires through atmospheric dispersion and mixing

Fig. 5 Observed change in VCD_{trop} NO₂ between LDN and BAU from OMI and TROPOMI for
different regions shown as (a) Violin plot of the absolute change over urban areas, (b)
percentage change over the urban area, (c) violin plot of the observed change over different
sized urban areas, and (d) percentage change over different sized urban areas.

333 We have also analysed the change in the VCD_{trop} NO₂ over urban areas of different sizes. We 334 have taken the urban areas of sizes more than 10 km² and grouped them into four bins of size 10-50 km², 50-100 km², 100-200 km², and greater than 200 km². We then calculate the changes 335 observed for all the cities filling into the respective bins. Fig. 5 (c & d) show the absolute and 336 percentage change in VCD_{trop} NO₂, as observed by OMI and TROPOMI, respectively. A 337 significant reduction of 50-150 ×1013 molecules cm⁻² (20-40 %) was observed over the urban 338 area of different sizes. The actual reduction in VCD_{trop} NO₂ is greater for the larger urban area 339 340 with peak reductions for the urban area bin $(> 200 \text{ km}^2)$ for both OMI and TROPOMI.

341

328

342

343 3.5 Inter-comparison of changes observed by OMI, TROPOMI and surface 344 observation

Fig. 6 (a,b) shows the relationship of OMI and TROPOMI NO₂ with surface NO₂ for the BAU
and LDN periods, respectively. During BAU, there are reasonable positive correlations
between the satellite instruments and the surface sites (OMI: 0.44, TROPOMI: 0.47). In LDN,

these correlations drop to 0.3 and 0.23, respectively, potentially linked with the primary reduction in urban NO₂ levels. We also determined the correlation between satellite and surface-observed changes during the lockdown (Fig. 6c), finding values of 0.23 (OMI) and 0.36 (TROPOMI). This indicates that the lockdown NO₂ reductions appear to be present in both measurement types, providing us with confidence in the observed changes detected in this study.

354

Fig. 6 Scatterplots between surface and satellite observed NO₂ for (a) business as usual
(BAU) and (b) lockdown (LDN). Panel (c) shows a scatterplot of observed absolute change
(LDN-BAU) in surface and satellite NO₂.

358

The LND NO₂ percentage change, observed by surface and spatially co-located satellite 359 measurements is shown in Figure 7 for various Indian regions. For this comparison, the number 360 361 of available CPCB surface monitoring stations were 17, 15, 81, 25, and 1 for central, northwest, IGP, south and north-east regions (north region data not available), respectively. Most of 362 the CPCB stations are in urban areas, so our results reflect changes in predominantly urban-363 sourced NO₂. At all surface sites in all regions, there was a percentage reduction greater than 364 20 % (Fig. 7). Satellite observations show a similar trend except for the north-east region where 365 366 enhancements are due to forest fires. Both OMI and TROPMI observed the highest reduction (~50 %) over IGP. A smaller average reduction of ~20 % over central India might be due to 367 368 the aggregate effect of power plants, forest fires and prevalent biomass burning activities during this season. While the effect of forest fires can be observed in the column NO₂, its effect 369 370 on the surface NO₂ is minimal. For the central, IGP and south regions, the mean percentage change observed by the surface monitoring station is comparable to that observed by the 371 372 satellites.

373

374

Fig. 7 (a) Boxplot showing the percentage change between LDN and BAU in NO₂ levels
observed by ground and satellite measurements at CPCB monitoring locations in different
regions. (b) Barchart showing the percentage change in NO₂ levels observed at megacities in
India for the same measurements as panel (a). The vertical line in the barchart is the standard
deviation.

380

381 We have intercompared the percentage change in NO_2 observed at the surface and by satellite 382 over the major Indian cities (i.e. New Delhi, Chennai, Mumbai, Bangalore, Ahmedabad, Kolkata, and Hyderabad, Fig. 7b). A significant reduction in the range of ~25-75 % is observed, 383 384 consistent in all observational sources used in this study. A similar reduction observed by the 385 satellites over the cities in other parts of the world has been reported (Tobías et al., 2020; 386 Naeger and Murphy, 2020; Kanniah et al., 2020; Huang and Sun, 2020). The satellites observe the largest reduction over Delhi and smallest over Kolkata. While the observed decline is 387 388 comparable for cities, Ahmedabad and Kolkata showed smaller declines than observed by 389 ground measurements. Also, the reduction observed at the surface has a larger spatial variability than the one observed from the space. This is potentially linked to the influence of 390 391 the local emissions which could not be detected by the space-based instruments because of relatively large satellite footprints. The results of percentage change observed by OMI are 392 393 consistent with the change reported by Pathakoti et al. (2020), although Siddiqui et al. (2020) reported a higher decline of NO₂ using TROPOMI. This is because we computed the changes 394 395 between lockdown and BAU during the same period of the year whereas Siddiqui et al. (2020) estimated the changes between the pre-lockdown NO₂ and the lockdown NO₂ which includes 396

the seasonal component of NO₂. We have also analysed the changes in VCD_{trop} NO₂ observed by both OMI and TROPOMI for the other major cities (Guttikunda et al., 2019), as shown in Fig. S3. A reduction of over 20 % was observed in most of the cities except for a few in the north-east and central India. Cities showing enhancement or smaller reductions reflect the enhanced fire activities in the north-east and central Indian regions. TROPOMI can capture the reduction over the cities near the fire-prone areas (e.g. Indore and Bhopal) because of its higher spatial resolution.

404

405 **3.6** Correlation of tropospheric columnar NO₂ with the population density

406 In this section, we examine the VCD_{trop} NO₂ and population relationship for India except where fire anomalies or large thermal power plants existed. The scatter density plots between VCD_{trop} 407 NO₂ and population density for the BAU and LDN analysis period are shown in Fig. 8 for OMI 408 and TROPOMI. The data were log-transformed to establish the log-log relationship as both 409 410 data sets are not normally distributed. As the observed changes had negative values, this log 411 transformation was obtained by adding a constant value which was later subtracted when 412 plotting to display the corresponding NO₂ values. Both OMI and TROPOMI NO₂ show a similar relationship with the population density with correlations of ~ 0.7 during the LDN and 413 BAU periods, suggesting a strong dependence upon the population (i.e. anthropogenic 414 emissions). The slopes of the lines in Fig. 8 (a,b,d,e) show that VCD_{trop} NO₂ follows a power-415 law scaling with population density (Lamsal et al., 2013). During BAU, the VCD_{trop} NO₂ 416 417 observed over a grid increased by factors of 2.2 and 1.73 for OMI and TROPOMI, respectively, with a ten-fold increase in the population density. The rate of increase of the VCD_{trop} NO₂ 418 419 during LDN was 2.0 and 1.58 times for OMI and TROPOMI, respectively, which was lower than BAU. The correlation during the LDN period was marginally lower than the BAU period. 420 This could be due to a larger reduction in the NO₂ levels in the densely populated grids. The 421 changes observed in the VCD_{trop} NO₂ during the LDN (Fig. 8c & f) were negatively correlated 422 423 (i.e. reduction was positively correlated) with the population density. The linear relation 424 suggests an increase in the reduction with an increase in the population density, however, some 425 grids exhibit enhancements in VCD_{trop} NO₂ due to the local emissions.

Fig. 8. Scatter density plot between the VCD_{trop} NO₂ (×10¹³ molecules cm⁻²) and population
density (pph) for the analysis period in different years. (a) Business as usual (BAU, 2016-2019)
observed by OMI; (b) lockdown (LDN, 2020) observed by OMI; (c) changes (LDN-BAU)
observed by OMI; (d) BAU (2019) observed by TROPOMI; (e) LDN (2020) observed by
TROPOMI; (f) LND-BAU changes observed by TROPOMI. The x and y axes are in log10 scale.
The slope of the line is also shown in the log10 scale.

433 4 Conclusions and discussion

The changes in NO₂ levels over India during the COVID-19 lockdown (25th March-3rd May 2020) have been studied using satellite-based VCD_{trop} NO₂ observed by OMI and TROPOMI, and surface NO₂ concentrations obtained from CPCB. The changes between lockdown (LDN) and the same period during business as usual (BAU) years have been estimated over different land-use categories (e.g. urban, cropland, and forestland) across six geographical regions of India. Also, the changes observed from space and at the surface have been inter-compared and the correlation with the population density has been studied.

441 Overall, a significant reduction in NO₂ levels of up to ~70 % was observed over India during 442 the lockdown as compared to the same period during BAU. The usual prominent NO₂ hotspots 443 observed by OMI and TROPOMI over urban agglomerations during BAU were barely 444 noticeable during the lockdown. However, the coal-based thermal power plants continued to 445 be major NO₂ hotspots during the lockdown. Some of the largest reductions in NO₂ were 446 observed to be over the urban areas of the IGP region. The reduction observed for urban

agglomerations was over 150×10^{13} molecules cm⁻² (~30 %), and even more for megacities 447 showing a reduction of around 250×10^{13} molecules cm⁻² (50 %). The reduction observed over 448 the urban areas was linked with reduced traffic emissions due to travel restrictions for COVID 449 450 containment. The reduction was also observed over rural regions. Average declines of NO₂ in 451 the ranges of 14-30 %, 8-28 % and 10-24 % were observed by OMI and 22-27 %, 6-18 % and 3-21 % were observed by TROPOMI over the urban, cropland and forestland, respectively, in 452 different regions of India. In contrast, an average enhancement over north-east India was 453 454 observed due to positive fire anomalies during the lockdown. Although we have considered the 455 grids with zero fire anomaly during the lockdown, the fire emissions can still contribute to the enhancement of NO₂ levels over grids with no fire activity because of horizontal transport. 456

457 The observed changes in VCD_{trop} NO₂ were found to be spatially positively correlated with 458 surface NO₂ concentrations indicating that the lockdown NO₂ changes appear to be present in both measurement types. The TROPOMI NO₂ showed a better correlation with surface NO₂ 459 460 and was more sensitive to the changes than the OMI because of the finer resolution. Therefore, TROPOMI can provide a better estimate of NO2 associated with fine-scale heterogeneous 461 462 emissions. Also, VCD_{trop} NO₂ was found to exhibit a good correlation with the population density, suggesting a strong dependence upon the population and hence the anthropogenic 463 464 emissions. The changes observed in the VCD_{trop} NO₂ during the lockdown were negatively correlated (i.e. reduction was positively correlated) with the population density suggesting a 465 larger reduction for the densely populated cities. However, the influence of local emissions can 466 467 be different in different cities.

The analysis presented in this work shows a significant change in NO_2 levels across India. The observed reductions can be linked with the control measures taken to prevent the spread of the COVID-19 that restricted the movement of the people resulting in a significant reduction in anthropogenic emissions. As an important message to policymakers, this study indicates the level of reduction in NO_2 that is possible if dramatic reductions in key emission sectors such as road traffic, were incorporated into air quality management strategies.

474 **5 Data availability.**

The tropospheric columnar NO2 data for TROPOMI and OMI are available at Google earthengine (https://developers.google.com/earth-engine/) and NASA's Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) respectively. Surface measured NO2 data across India are available at CPCB site (https://app.cpcbccr.com/ccr/). VIIRS fire count data is

- available at FIRMS web portal (https://firms.modaps.eosdis.nasa.gov/). India Population data
 used in this study is available at the https://www.worldpop.org/. The LULC data for India is
 available at the Bhuvan, (https://bhuvan.nrsc.gov.in/) Indian Geo-Platform of Indian Space
- 482 Research Organisation.

483 6 Author contribution

Akash Biswal and Vikas Singh: Conceptualization, investigation, visualization, formal
analysis, writing original draft, writing, reviewing and editing; Shweta Singh: Investigation,
writing original draft, discussion, reviewing and editing, Amit Kesarkar, Ravindra Khaiwal,
Ranjeet Sokhi, Martyn Chipperfield, Sandip Dhomse, Richard Pope, Tanbir Singh,
Suman Mor: Investigation, discussion, reviewing and editing.

489 7 Declaration of competing interest

490 The authors declare that they have no known competing financial interests or personal

491 relationships that could have appeared to influence the work reported in this paper.

492 8 Acknowledgments

493 The authors are thankful to the Director, National Atmospheric Research Laboratory (NARL, 494 India), for encouragement to conduct this research and provide the necessary support. AB and SS greatly acknowledge the Ministry of Earth Sciences (MoES, India) for research fellowship. 495 496 We acknowledge and thank Central Pollution Control Board (CPCB), Ministry of 497 Environment, Forest and Climate Change (MoEFCC, India) for making available air quality data in public. We acknowledge Bhuvan, Indian Geo-Platform of Indian Space Research 498 Organisation (ISRO), National Remote Sensing Centre (NRSC) for providing high-resolution 499 LULC data. The authors gratefully acknowledge OMI and TROPOMI science teams for 500 501 making OMI and TROPOMI data publicly available. We also acknowledge the NASA Giovanni and Google Earth Engine. We acknowledge support from the Air Pollution and 502 Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian 503 MOES, Grant reference number NE/P016391/1. 504

506 **References**

507	Bauwens, M., Compernolle, S., Stavrakou, T., Müller, JF., Gent, J. van, Eskes, H., Levelt, P.
508	F., A, R. van der, Veefkind, J. P., Vlietinck, J., Yu, H. and Zehner, C.: Impact of
509	Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI
510	Observations, Geophys. Res. Lett., 47(11), e2020GL087978,
511	doi:10.1029/2020GL087978, 2020.
512	Biswal, A., Singh, T., Singh, V., Ravindra, K. and Mor, S.: COVID-19 lockdown and its impact
513	on tropospheric NO2 concentrations over India using satellite-based data, Heliyon, 6(9),
514	doi:10.1016/j.heliyon.2020.e04764, 2020.
515	Boersma, K. F., Eskes, H. J. and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval
516	from space, J. Geophys. Res. Atmospheres, 109(D4), doi:10.1029/2003JD003962, 2004.
517	Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P.,
518	Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y. and
519	Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone
520	Monitoring Instrument, Atmospheric Meas. Tech., 4(9), 1905-1928,
521	doi:https://doi.org/10.5194/amt-4-1905-2011, 2011.
522	Celarier, E. A., Brinksma, E. J., Gleason, J. F., Veefkind, J. P., Cede, A., Herman, J. R., Ionov,
523	D., Goutail, F., Pommereau, JP., Lambert, JC., Roozendael, M. van, Pinardi, G.,
524	Wittrock, F., Schönhardt, A., Richter, A., Ibrahim, O. W., Wagner, T., Bojkov, B., Mount,
525	G., Spinei, E., Chen, C. M., Pongetti, T. J., Sander, S. P., Bucsela, E. J., Wenig, M. O.,
526	Swart, D. P. J., Volten, H., Kroon, M. and Levelt, P. F.: Validation of Ozone Monitoring
527	Instrument nitrogen dioxide columns, J. Geophys. Res. Atmospheres, 113(D15),
528	doi:10.1029/2007JD008908, 2008.
529	Curier, R. L., Kranenburg, R., Segers, A. J. S., Timmermans, R. M. A. and Schaap, M.:
530	Synergistic use of OMI NO2 tropospheric columns and LOTOS-EUROS to evaluate the
531	NOx emission trends across Europe, Remote Sens. Environ., 149, 58-69,
532	doi:10.1016/j.rse.2014.03.032, 2014.
533	Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz,
534	M. M. and Pickering, K. E.: A space-based, high-resolution view of notable changes in
535	urban NOx pollution around the world (2005-2014), J. Geophys. Res. Atmospheres,
536	121(2), 976–996, doi:10.1002/2015JD024121, 2016.

Dutheil, F., Baker, J. S. and Navel, V.: COVID-19 as a factor influencing air pollution?,
Environ. Pollut., 263, 114466, doi:10.1016/j.envpol.2020.114466, 2020.

539	ESA,	Air	pollution	drops	in	India	following	lockdown
540	https	://www.es	a.int/Applicati	ons/Observ	ing_the	_Earth/Cope	rnicus/Sentinel-	
541	5P/A	ir_polluti	on_drops_in_I	ndia_follow	ving_loc	kdown, 2020). (Accessed: O	ct 01, 2020)
542	Eskes, H	., van Geff	en, J., Boersma	a, F., Eichm	ann, K	U., Apituley	, A., Pedergnan	a, M., Sneep,
543	М., У	Veefkind,	J. P., and Loyo	la, D.: Senti	nel-5 pr	ecursor/TRO	OPOMI Level 2	Product User
544	Man	ual Nitrog	endioxide, Te	ch. Rep. S5	P-KNM	I-L2- 0021-	MA, Koninklijl	K Nederlands
545	Mete	eorologiscl	h		Instit	uut		(KNMI),
546	https	://sentinel	.esa.int/docum	ents/247904	4/247472	26/Sentinel-	5P-Level-2-Pro	duct-User-
547	Man	ual-Nitrog	en-Dioxide, C	I-7570-PUN	M, issue	3.0.0, 2019.		
548	Georgoul	lias, A. K.	, van der A, R	. J., Stamm	es, P., E	Boersma, K.	F., and Eskes,	H. J.: Trends
549	and	trend reve	ersal detection	in 2 decad	des of t	ropospheric	NO2 satellite	observations,
550	Atm	os. Chem.	Phys., 19, 626	9–6294, htt	ps://doi.	org/10.5194	/acp-19-6269-2	019, 2019.
551	Ghude, S	5. D., Fadn	avis, S., Beig,	G., Polade,	S. D. a	nd A, R. J. v	an der: Detection	on of surface
552	emis	sion hot s	pots, trends, ar	nd seasonal	cycle fr	om satellite-	retrieved NO2	over India, J.
553	Geoj	phys. Res.	Atmospheres,	113(D20),	doi:10.1	029/2007JD	009615, 2008.	
554	Ghude, S	S. D., Kull	karni, P. S., K	ulkarni, S.	H., Fad	navis, S. an	d A, R. J. V. I	D.: Temporal
555	varia	ation of ur	ban NO x con	centration in	n India o	luring the p	ast decade as ol	oserved from
556	space	e, Int. J. R	emote Sens., 3	2(3), 849–8	61, doi:	10.1080/014	31161.2010.51	7797, 2011.
557	Ghude, S	5. D., Kulk	arni, S. H., Jer	na, C., Pfiste	er, G. G	, Beig, G., I	Fadnavis, S. and	l A, R. J. van
558	der:	Applicatio	on of satellite of	observation	s for ide	ntifying reg	ions of domina	nt sources of
559	nitro	gen oxide	s over the Inc	lian Subcor	ntinent,	J. Geophys.	Res. Atmosph	eres, 118(2),
560	1075	5–1089, do	i:10.1029/2012	2JD017811	, 2013.			
561	Ghude, S	5. D., Lal,	D. M., Beig,	G., A, R.	van der	and Sable,	D.: Rain-Induc	ed Soil NOx
562	Emis	ssion Fron	n India During	the Onset o	of the Su	mmer Mons	oon: A Satellite	Perspective,
563	J. Ge	eophys. Re	es. Atmosphere	es, 115(D16), doi:10	.1029/2009J	JD013367, 2010).
564	Guenther	r, A. B., Jia	ang, X., Heald,	C. L., Sakı	ulyanont	vittaya, T., I	Duhl, T., Emmo	ns, L. K. and
565	Wan	g, X.: Th	e Model of E	missions of	f Gases	and Aerosc	ols from Nature	version 2.1
566	(ME	GAN2.1):	an extended	and update	d frame	work for m	odeling biogeni	c emissions,
567	Geos	sci. Mode	1 Dev., 5(6),	1471–1492	2, doi:ht	tps://doi.org	g/10.5194/gmd-5	5-1471-2012,
568	2012	2.						
569	Guttikun	da, S. K.,	Nishadh, K.	A. and Jaw	vahar, P	: Air pollut	tion knowledge	assessments
570	(APr	nA) for 20	Indian cities, U	Urban Clim	., 27, 12	4–141, doi:1	0.1016/j.uclim.	2018.11.005,
571	2019).						

572	Hama, S. M. L., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., Namdeo, A.,
573	Sokhi, R., Goodman, P. and Sharma, C.: Four-year assessment of ambient particulate
574	matter and trace gases in the Delhi-NCR region of India, Sustain. Cities Soc., 54, 102003,
575	doi:10.1016/j.scs.2019.102003, 2020.
576	Hilboll, A., Richter, A. and Burrows, J. P.: Long-term changes of tropospheric NO2 over
577	megacities derived from multiple satellite instruments, Atmospheric Chem. Phys., 13(8),
578	4145-4169, doi:https://doi.org/10.5194/acp-13-4145-2013, 2013.
579	Hilboll, A., Richter, A. and Burrows, J. P.: NO2 pollution over India observed from space
580	– the impact of rapid economic growth, and a recent decline, Atmospheric Chem.
581	Phys. Discuss., 1-18, doi:https://doi.org/10.5194/acp-2017-101, 2017.
582	Huang, G. and Sun, K.: Non-negligible impacts of clean air regulations on the reduction of
583	tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and
584	TROPOMI, Sci. Total Environ., 745, 141023, doi:10.1016/j.scitotenv.2020.141023, 2020.
585	Kanniah, K. D., Kamarul Zaman, N. A. F., Kaskaoutis, D. G. and Latif, M. T.: COVID-19's
586	impact on the atmospheric environment in the Southeast Asia region, Sci. Total Environ.,
587	736, 139658, doi:10.1016/j.scitotenv.2020.139658, 2020.
588	Kramer, L. J., Leigh, R. J., Remedios, J. J. and Monks, P. S.: Comparison of OMI and ground-
589	based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban
590	area, J. Geophys. Res. Atmospheres, 113(D16), doi:10.1029/2007JD009168, 2008.
591	Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E.
592	J., Chan, K. L., Wenig, M. and Zara, M.: The version 3 OMI NO2 standard product,
593	Atmospheric Meas. Tech., 10(9), 3133-3149, doi:https://doi.org/10.5194/amt-10-3133-
594	2017, 2017.
595	Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G. and
596	Lu, Z.: U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data versus
597	improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ.,
598	110, 130-143, doi:10.1016/j.atmosenv.2015.03.055, 2015.
599	Lamsal, L. N., Martin, R. V., Donkelaar, A. van, Celarier, E. A., Bucsela, E. J., Boersma, K.
600	F., Dirksen, R., Luo, C. and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide
601	retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen
602	oxides at northern midlatitudes, J. Geophys. Res. Atmospheres, 115(D5),
603	doi:10.1029/2009JD013351, 2010.

604	Lamsal, L. N., Martin, R. V., Parrish, D. D. and Krotkov, N. A.: Scaling Relationship for NO2
605	Pollution and Urban Population Size: A Satellite Perspective, Environ. Sci. Technol.,
606	47(14), 7855–7861, doi:10.1021/es400744g, 2013.
607	Lane, T. E., Donahue, N. M. and Pandis, S. N.: Effect of NOx on Secondary Organic Aerosol
608	Concentrations, Environ. Sci. Technol., 42(16), 6022-6027, doi:10.1021/es703225a,
609	2008.
610	Li, F., Zhang, X., Kondragunta, S. and Csiszar, I.: Comparison of Fire Radiative Power
611	Estimates From VIIRS and MODIS Observations, J. Geophys. Res. Atmospheres, 123(9),
612	4545–4563, doi:10.1029/2017JD027823, 2018.
613	Lin, JT., Liu, MY., Xin, JY., Boersma, K. F., Spurr, R., Martin, R. and Zhang, Q.:
614	Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and
615	spatial characteristics and implications for NOx emission constraints, Atmospheric Chem.
616	Phys., 15(19), 11217-11241, doi:https://doi.org/10.5194/acp-15-11217-2015, 2015.
617	Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., Krotkov,
618	N. A., Eskes, H., A, R. van der, Veefkind, P., Levelt, P. F., Hauser, O. P. and Joiner, J.:
619	Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-
620	19, Sci. Adv., 6(28), eabc2992, doi:10.1126/sciadv.abc2992, 2020.
621	Mahajan, A. S., De Smedt, I., Biswas, M. S., Ghude, S., Fadnavis, S., Roy, C. and van
622	Roozendael, M.: Inter-annual variations in satellite observations of nitrogen dioxide and
623	formaldehyde over India, Atmos. Environ., 116, 194–201,
624	doi:10.1016/j.atmosenv.2015.06.004, 2015.
625	Mahato, S., Pal, S. and Ghosh, K. G.: Effect of lockdown amid COVID-19 pandemic on air
626	quality of the megacity Delhi, India, Sci. Total Environ., 730, 139086,
627	doi:10.1016/j.scitotenv.2020.139086, 2020.
628	Martin, R. V., Sioris, C. E., Chance, K., Ryerson, T. B., Bertram, T. H., Wooldridge, P. J.,
629	Cohen, R. C., Neuman, J. A., Swanson, A. and Flocke, F. M.: Evaluation of space-based
630	constraints on global nitrogen oxide emissions with regional aircraft measurements over
631	and downwind of eastern North America, J. Geophys. Res. Atmospheres, 111(D15),
632	doi:10.1029/2005JD006680, 2006.
633	MHA, No.40-3/2020-DM-I (A).: Government of India, Ministry of Home Affairs
634	https://www.mha.gov.in/sites/default/files/MHA%20order%20dt%2015.04.2020%2C%2
635	$0 with \% 20 Revised \% 20 Consolidated \% 20 Guidelines_compressed \% 20 \% 283 \% 29. pdf;$
636	http://www.du.ac.in/du/uploads/PR_Consolidated%20Guideline%20of%20MHA_28032
637	020%20(1)_1.PDF;

638	https://www.mha.gov.in/sites/default/files/MHA%20Order%20Dt.%201.5.2020%20to%
639	20extend%20Lockdown%20period%20for%202%20weeks%20w.e.f.%204.5.2020%20weeks%20w.e.f.%204.5.2020%20weeks%20w.e.f.%204.5.2020%20weeks%20weeks%20w.e.f.%204.5.2020%20weeks%200weeks%200weeks%200weeks%2000000000000000000000000000000000000
640	ith%20new%20guidelines.pdf, 2020. (Accessed: Oct 01, 2020)
641	Mills, I. C., Atkinson, R. W., Kang, S., Walton, H. and Anderson, H. R.: Quantitative
642	systematic review of the associations between short-term exposure to nitrogen dioxide and
643	mortality and hospital admissions, BMJ Open, 5(5), e006946, doi:10.1136/bmjopen-2014-
644	006946, 2015.
645	Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D.,
646	Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von
647	Schneidemesser, E., Sommariva, R., Wild, O. and Williams, M. L.: Tropospheric ozone
648	and its precursors from the urban to the global scale from air quality to short-lived climate
649	forcer, Atmospheric Chem. Phys., 15(15), 8889–8973, doi:https://doi.org/10.5194/acp-15-
650	8889-2015, 2015.
651	Muhammad, S., Long, X. and Salman, M.: COVID-19 pandemic and environmental pollution:
652	A blessing in disguise?, Sci. Total Environ., 728, 138820,
653	doi:10.1016/j.scitotenv.2020.138820, 2020.
654	Naeger, A. R. and Murphy, K.: Impact of COVID-19 Containment Measures on Air Pollution
655	in California, Aerosol Air Qual. Res., 20(10), 2025–2034, doi:10.4209/aaqr.2020.05.0227,
656	2020.
657	NASA.: Satellite Observed Tropospheric NO2 Concentration Decreased over East Asia in
658	early 2020, <u>https://disc.gsfc.nasa.gov/information/data-in-</u>
659	$\underline{action?title=Satellite\%20Observed\%20Tropospheric\%20NO2\%20Concentration\%20Dec}$
660	reased%20over%20East%20Asia%20in%20early%202020#, 2020. (Accessed: Oct 01,
661	2020)
662	Navinya, C., Patidar, G. and Phuleria, H. C.: Examining Effects of the COVID-19 National
663	Lockdown on Ambient Air Quality across Urban India, Aerosol Air Qual. Res., 20(8),
664	1759–1771, doi:10.4209/aaqr.2020.05.0256, 2020.
665	Nori-Sarma, A., Thimmulappa, R. K., Venkataramana, G. V., Fauzie, A. K., Dey, S. K.,
666	Venkareddy, L. K., Berman, J. D., Lane, K. J., Fong, K. C., Warren, J. L. and Bell, M. L.:
667	Low-cost NO2 monitoring and predictions of urban exposure using universal kriging and
668	land-use regression modelling in Mysore, India, Atmos. Environ., 226, 117395,
669	doi:10.1016/j.atmosenv.2020.117395, 2020.
670	NRSC, National Remote Sensing Centre, Natural Resources Census, National Land Use and

671 Land Cover Mapping Using Multitemporal AWiFS Data (LULC-AWiFS), Eighth Cycle

672	(2011-12) Indian Space Research Organisation Department of Space, Government of
673	India. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/1112.pdf, 2012.
674	(Accessed: Oct 01, 2020)
675	Pathakoti, M., Muppalla, A., Hazra, S., Dangeti, M., Shekhar, R., Jella, S., Mullapudi, S. S.,
676	Andugulapati, P. and Vijayasundaram, U.: An assessment of the impact of a nation-wide
677	lockdown on air pollution – a remote sensing perspective over India, Atmospheric
678	Chem. Phys. Discuss., 1-16, doi:https://doi.org/10.5194/acp-2020-621, 2020.
679	Penn, E. and Holloway, T.: Evaluating current satellite capability to observe diurnal change in
680	nitrogen oxides in preparation for geostationary satellite missions, Environ. Res. Lett.,
681	15(3), 034038, doi:10.1088/1748-9326/ab6b36, 2020.
682	Prasad, A. K., Singh, R. P. and Kafatos, M.: Influence of coal-based thermal power plants on
683	the spatial-temporal variability of tropospheric NO2column over India, Environ. Monit.
684	Assess., 184(4), 1891–1907, doi:10.1007/s10661-011-2087-6, 2012.
685	Prosperi, P., Bloise, M., Tubiello, F. N., Conchedda, G., Rossi, S., Boschetti, L., Salvatore, M.
686	and Bernoux, M.: New estimates of greenhouse gas emissions from biomass burning and
687	peat fires using MODIS Collection 6 burned areas, Clim. Change, 161(3), 415-432,
688	doi:10.1007/s10584-020-02654-0, 2020.
689	Russell, A. R., Valin, L. C. and Cohen, R. C.: Trends in OMI NO2 observations over the United
690	States: effects of emission control technology and the economic recession, Atmospheric
691	Chem. Phys., 12(24), 12197-12209, doi:https://doi.org/10.5194/acp-12-12197-2012,
692	2012.
693	Sahu, L. K., Sheel, V., Pandey, K., Yadav, R., Saxena, P. and Gunthe, S.: Regional biomass
694	burning trends in India: Analysis of satellite fire data, J. Earth Syst. Sci., 124(7), 1377-
695	1387, doi:10.1007/s12040-015-0616-3, 2015.
696	Schroeder, W., Oliva, P., Giglio, L. and Csiszar, I. A.: The New VIIRS 375m active fire
697	detection data product: Algorithm description and initial assessment, Remote Sens.
698	Environ., 143, 85–96, doi:10.1016/j.rse.2013.12.008, 2014.
699	Sharma, P., Sharma, P., Jain, S. and Kumar, P.: An integrated statistical approach for evaluating
700	the exceedence of criteria pollutants in the ambient air of megacity Delhi, Atmos. Environ.,
701	70, 7–17, doi:10.1016/j.atmosenv.2013.01.004, 2013.
702	Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H. and Kota, S. H.: Effect of restricted
703	emissions during COVID-19 on air quality in India, Sci. Total Environ., 728, 138878,

doi:10.1016/j.scitotenv.2020.138878, 2020.

705	Siddiqui, A., Halder, S., Chauhan, P. and Kumar, P.: COVID-19 Pandemic and City-Level
706	Nitrogen Dioxide (NO2) Reduction for Urban Centres of India, J. Indian Soc. Remote
707	Sens., 48(7), 999–1006, doi:10.1007/s12524-020-01130-7, 2020.
708	Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S. and Ravindra, K.: Diurnal and
709	temporal changes in air pollution during COVID-19 strict lockdown over different regions
710	of India, Environ. Pollut., 266, 115368, doi:10.1016/j.envpol.2020.115368, 2020.
711	Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Miller,
712	H. J., and Chen, Z.: Climate Change 2007: 10Working Group I: The Physical Science
713	Basis, Tech. rep., Intergovernmental Panel on Climate Change, Geneva, 2007.
714	Stevens, F. R., Gaughan, A. E., Linard, C. and Tatem, A. J.: Disaggregating Census Data for
715	Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data,
716	PLOS ONE, 10(2), e0107042, doi:10.1371/journal.pone.0107042, 2015.
717	Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., Alastuey, A.
718	and Querol, X.: Changes in air quality during the lockdown in Barcelona (Spain) one
719	month into the SARS-CoV-2 epidemic, Sci. Total Environ., 726, 138540,
720	doi:10.1016/j.scitotenv.2020.138540, 2020.
721	ul-Haq, Z., Tariq, S., Ali, M., Rana, A. D. and Mahmood, K.: Satellite-sensed tropospheric
722	NO2 patterns and anomalies over Indus, Ganges, Brahmaputra, and Meghna river basins,
723	Int. J. Remote Sens., 38(5), 1423-1450, doi:10.1080/01431161.2017.1283071, 2017.
724	USEPA, CATC.: Nitrogen oxides (NOx) why and how they are controlled. Diane Publishing.
725	https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf, 1999.
726	van der A, R. J., Eskes, H. J., Boersma, K. F., Noije, T. P. C. van, Roozendael, M. V., Smedt,
727	I. D., Peters, D. H. M. U. and Meijer, E. W.: Trends, seasonal variability and dominant
728	NOx source derived from a ten year record of NO2 measured from space, J. Geophys. Res.
729	Atmospheres, 113(D4), doi:10.1029/2007JD009021, 2008.
730	van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., and Veefkind, J. P.:
731	TROPOMI ATBD of the total and tropospheric NO2 data products, Report S5P-KNMI-
732	L2-0005-RP, version 2.1.0, to be released, KNMI, De Bilt, the Netherlands, available at:
733	http://www.tropomi.eu/documents/atbd/ (last access: 10 September 2020), 2019.
734	van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M. and Veefkind,
735	J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and
736	comparisons with OMI, Atmospheric Meas. Tech., 13(3), 1315-1335,
737	doi:https://doi.org/10.5194/amt-13-1315-2020, 2020.

738	Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.
739	J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf,
740	J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H. and Levelt,
741	P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
742	observations of the atmospheric composition for climate, air quality and ozone layer
743	applications, Remote Sens. Environ., 120, 70-83, doi:10.1016/j.rse.2011.09.027, 2012.
744	Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, JF., Crouzille, B.,
745	Boucher, O. and Streets, D. G.: Emissions from open biomass burning in India: Integrating
746	the inventory approach with high-resolution Moderate Resolution Imaging
747	Spectroradiometer (MODIS) active-fire and land cover data, Glob. Biogeochem. Cycles,
748	20(2), doi:10.1029/2005GB002547, 2006.
749	Venter, Z. S., Aunan, K., Chowdhury, S. and Lelieveld, J.: COVID-19 lockdowns cause global
750	air pollution declines, Proc. Natl. Acad. Sci., 117(32), 18984-18990,
751	doi:10.1073/pnas.2006853117, 2020.
752	Wang, C., Wang, T., Wang, P. and Rakitin, V.: Comparison and Validation of TROPOMI and
753	OMI NO2 Observations over China, Atmosphere, 11(6), 636,
754	doi:10.3390/atmos11060636, 2020.
755	WorldPop.: India 100m Population, Version 2. University of Southampton. DOI:
756	10.5258/SOTON/WP00532 2017, 2017.
757	
758	
759	
760	