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Abstract 16 

We have estimated the spatial changes in NO2 levels over different regions of India during the 17 

COVID-19 lockdown (25th March – 3rd May 2020) using the satellite-based tropospheric 18 

column NO2 observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric 19 

Monitoring Instrument (TROPOMI), as well as surface NO2 concentrations obtained from the 20 

Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO2 21 

levels was observed across India during the lockdown compared to the same period during 22 

previous business-as-usual years, except for some regions that were influenced by anomalous 23 

fires in 2020. The reduction (negative change) over the urban agglomerations was substantial 24 

(~20-40 %) and directly proportional to the urban size and population density. Rural regions 25 

across India also experienced lower NO2 values by ~15-25 %. Localised enhancement of NO2 26 

associated with isolated emission increase scattered across India, were also detected. Observed 27 

percentage changes in satellite and surface observations were consistent across most regions 28 

and cities, but the surface observations were subject to larger variability depending on their 29 
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proximity to the local emission sources. Observations also indicate NO2 enhancements of up 30 

to ~ 25 % during the lockdown associated with fire emissions over the north-east, and some 31 

parts of central regions. In addition, the cities located near the large fire emission sources show 32 

much smaller NO2 reduction than other urban areas as the decrease at the surface was masked 33 

by enhancement in NO2 due to the transport of the fire emissions. 34 

Keywords: OMI, TROPOMI, CPCB, Emission reduction, Air quality, ISRO LULC 35 

1 Introduction 36 

Nitrogen oxides NOx (NO+NO2) are one of the major air pollutants, as defined by various 37 

national environmental agencies across the world, due to its adverse impact on human health 38 

(e.g. Mills et al., 2015). Furthermore, tropospheric levels of NOx can affect tropospheric ozone 39 

formation (Monks et al., 2015), contribute to the secondary aerosol formation (Lane et al., 40 

2008), acid deposition, and impact climatic cycles (Lin et al., 2015). The major anthropogenic 41 

sources of NOx emissions include the combustion of fossil fuels in road transport, aviation, 42 

shipping, industries, and thermal power plants (e.g. USEPA, 1999; Ghude et al., 2013; Hilboll 43 

et al., 2017). Other sources include open biomass burning (OBB), mainly large-scale forest 44 

fires (e.g. Hilboll et al., 2017), lightning (e.g. Solomon et al., 2007) and emissions from soil 45 

(e.g. Ghude et al., 2010). NOx hotspots are often observed over thermal power plants, industries 46 

and urban areas with large traffic volumes causing larger localised emissions (e.g. Prasad et 47 

al., 2012; Hilboll et al., 2013; Ghude et al., 2013). 48 

With growing scientific awareness of the adverse impacts of air pollution, the number of air 49 

quality monitoring stations has expanded to over 10,000 across the globe (Venter et al., 2020). 50 

Additionally, multiple missions including the Global Ozone Monitoring Instrument (GOME) 51 

on ERS-2, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 52 

(SCIAMACHY, 2002-2012) on Envisat, the Ozone Monitoring Instrument (OMI, 2005-53 

present) on Aura, GOME-2 (2007-present) on MetOp and the TROPOspheric Monitoring 54 

Instrument (TROPOMI, 2017-present) on Sentinel-5P (S5P) have monitored NO2 pollution 55 

from the space for over two decades. Surface sites typically measure NO2 in concentration 56 

quantities (e.g. µg m-3), but satellite NO2 measurements are retrieved as integrated vertical 57 

columns (e.g. tropospheric vertical column density, VCDtrop). The latter is preferred to study 58 

NO2 trends and variabilities because of global spatial coverage, and spatio-temporal similarity 59 

with ground-based measurements (Martin et al., 2006; Kramer et al., 2008; Weing et al., 2008; 60 

Lamsal et al., 2010; Ghude et al., 2011). NO2 has been reported to increase in south Asian 61 
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countries (Duncan et al., 2016; Hilboll et al., 2017; ul-Haq et al., 2017), decrease over Europe 62 

(van der A  et al., 2008; Curier et al., 2014; Georgoulias et al., 2019) and the United States ( 63 

Russell et al., 2012; Lamsal et al., 2015). In the case of India, tropospheric NO2 increased 64 

during the 2000s (Mahajan et al., 2015; Hilboll et al., 2017), but since 2012 it has either 65 

stabilized or even declined owing to the combined effect of economic slowdown and adaptation 66 

of cleaner technology (Hilboll et al., 2017). However, thermal power plants, megacities, large 67 

urban areas and industrial regions remain the NO2 emission hotspots (Ghude et al., 2008, 2013; 68 

Prasad et al., 2012; Hilboll et al., 2013; Duncan et al., 2016; Hilboll et al., 2017). Moreover, 69 

despite the measures taken to control NOx emissions, urban areas often exceed national ambient 70 

air quality standards in India (Sharma et al., 2013; Nori-Sarma et al., 2020; Hama et al., 2020), 71 

and thus require a detailed scenario analysis. 72 

The nationwide lockdown in various countries during March-May 2020 due to the outbreak of 73 

COVID-19 reduced the traffic and industrial activities leading to a significant reduction of 74 

NO2. Studies using space-based and surface observations of NO2 have reported reductions in 75 

the range of ~30-60 % for China, South Korea, Malaysia, Western Europe, and the U.S. 76 

(Bauwens et al., 2020; Kanniah et al., 2020; Muhammad et al., 2020; Tobías et al., 2020; 77 

Dutheil et al., 2020; Liu et al., 2020; Huang and Sun 2020; Naeger and Murphy 2020; NASA, 78 

2020), with the reductions observed strongly linked to the restrictions imposed on vehicular 79 

movement. The lockdown in India was implemented in various phases starting on the 25th 80 

March 2020 (MHA, 2020; Singh et al., 2020). The lockdown restrictions in the first two phases 81 

(Phase 1: 25th March - 14th April 2020 and Phase 2: 15th April to -3rd May 2020) were the 82 

strictest, during which all non-essential services and offices were closed and the movement of 83 

the people was restricted, resulting in a large reduction in the anthropogenic emissions. The 84 

restrictions were relaxed in a phased manner from the third phase onwards in less affected areas 85 

by permitting activities and partial movement of people (MHA, 2020). 86 

A decline in NO2 levels over India during the lockdown has been reported from both surface 87 

observations (Singh et al., 2020; Sharma et al., 2020; Mahato et al., 2020), as well as satellite 88 

observations (ESA, 2020; Biswal et al., 2020; Siddiqui et al., 2020; Pathakoti et al., 2020).  A 89 

detailed study by Singh et al. (2020) based on 134 sites across India reported a decline of ∼30–90 

70 % in NO2 with a larger reduction observed during peak morning traffic hours and late 91 

evening hours. While Sharma et al. (2020) reported a lesser decrease (18 %) in NO2 for selected 92 

sites, Mahato et al., (2020) found a decrease of over 50 % in Delhi for the first phase of 93 

lockdown which was also confirmed by Singh et al. (2020) for the extended period of analysis. 94 
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The satellite-based studies by Biswal et al. (2020) and Pathakoti et al. (2020) estimated the 95 

change in NO2 levels using OMI observations whereas Siddiqui et al. (2020) utilised 96 

TROPOMI to compute the change over eight major urban centres of India.  Biswal et al. (2020) 97 

reported that average OMI NO2 over India decreased by 12.7 %, 13.7 %, 15.9 %, and 6.1 % 98 

during the subsequent weeks of the lockdown. Similarly, Pathakoti et al. (2020) reported a 99 

decrease of 17 % in average OMI NO2 over India as compared to the pre-lockdown period and 100 

a decrease of 18 % against the previous 5-year average. Moreover, both the study reported a 101 

larger reduction of over 50 % over Delhi. Similarly, Siddiqui et al. (2020) also reported an 102 

average reduction of 46 % in the eight cities during the first lockdown phase with respect to 103 

the pre-lockdown phase. While recent studies have utilized either only satellite observations or 104 

only surface observations, this study goes further by adopting an integrated approach by 105 

combining both measurement types to investigate NO2 level changes over India in response to 106 

the COVID-19 pandemic using OMI, TROPOMI and surface observations over different 107 

regions. As both OMI and TROPOMI have similar local overpass times of approximately 13:30 108 

(Penn and Holloway, 2020; van Geffen et al., 2020), diurnal influences on the retrievals of NO2 109 

for both instruments are similar. Moreover, as both instruments use similar retrieval schemes, 110 

their NO2 measurements should be comparable with a suitable degree of confidence (van 111 

Geffen et al., 2020; Wang et al., 2020). We estimate the changes in the NO2 levels over different 112 

land-use categories and urban sizes. In addition to this, we investigate the spatial agreement 113 

between population density and NO2 spatial variability observed at the surface. A key benefit 114 

of this study will be to understand and assess the impact of reduced anthropogenic activity on 115 

NO2 from the satellite and surface observations. This study thus provides an improved 116 

understanding of the spatial variations of tropospheric NO2 for future air quality management 117 

in India.   118 

2 Data and methodology 119 

2.1 Data 120 

Satellite observations of VCDtrop NO2 were obtained from OMI (2016-2020) and TROPOMI 121 

(2019-2020). Surface NO2 observations (2016-2020) at 139 sites across India were from the 122 

Central Pollution Control Board (CPCB). The period from 25th March to 3rd May each year is 123 

defined as the analysis period. Average NO2 levels during the analysis period in 2020 and 124 

previous years are referred to as lockdown (LDN) NO2 and business as usual (BAU) NO2, 125 

https://doi.org/10.5194/acp-2020-1023
Preprint. Discussion started: 13 October 2020
c© Author(s) 2020. CC BY 4.0 License.



5 
 

respectively. The BAU years for OMI and CPCB are 2016-2019 whereas for TROPOMI the 126 

BAU year is 2019 because of the unavailability of earlier observations. 127 

NO2 data were analysed for six geographical regions (north, Indo Gangetic Plain (IGP), north-128 

west, north-east, central and south) of India (supplementary Fig. S1). The NO2 changes over 129 

various land-use categories (i.e. urban, cropland and forestland) have been analysed using 130 

spatially collocated land-use land cover (LULC) data (NRSC, 2012) and OMI and TROPOMI 131 

observed VCDtrop NO2. Visible Infrared Imaging Radiometer Suite (VIIRS) fire count data was 132 

used to study the fire anomalies during the LDN and other analysis periods. 133 

2.1.1 OMI NO2 134 

OMI has a nadir footprint of approximately 13 km × 24 km measuring in the ultraviolet-visible 135 

(UV-Vis) spectral range of 270-500 nm (Boersma et al., 2011). It uses differential optical 136 

absorption spectroscopy (DOAS) to retrieve VCDtrop (i.e. VCDtrop is the difference between the 137 

total and stratospheric slant columns divided by the tropospheric air mass factor; (Boersma et 138 

al., 2004). Here, we use the OMI NO2 30 % Cloud-Screened Tropospheric Column L3 Global 139 

Gridded (Version 3) at a 0.25o × 0.25o spatial grid from the NASA Goddard Earth Sciences 140 

Data and Information Services Center (GESDISC) available at 141 

(https://giovanni.gsfc.nasa.gov/giovanni/). Details of the retrieval scheme and OMI standard 142 

product (Version 3) are discussed by e.g. Celarier et al., (2008) and Krotkov et al., (2017). 143 

2.1.2 TROPOMI NO2 144 

TROPOMI has a nadir-viewing spectral range of 270–500 nm (UV-Vis), 675–775 nm (near-145 

infrared, NIR) and 2305–2385 nm (short wave-infrared, SWIR). In the UV-Vis and NIR 146 

wavelengths, TROPOMI has an unparalleled spatial footprint of 3.5 km × 7.0 km, along with 147 

7 km × 7 km in the SWIR (Veefkind et al., 2012). Details of the TROPOMI scheme and data 148 

are discussed by Eskes et al. (2019) and Van Geffen et al. (2019). The time-averaged VCDtrop 149 

NO2 over India for the analysis period was obtained at 10 km × 10 km resolution from the 150 

Google earth-engine (https://developers.google.com/earth-151 

engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2). The source data are filtered to 152 

remove pixels with QA (Quality Assurance) values less than 75 % which removes cloud-153 

covered scenes, part of the scenes covered by snow/ice, errors and problematic retrievals (Eskes 154 

et al., 2019). 155 
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2.1.3 Surface NO2 concentration 156 

The hourly averaged surface NO2 concentration at 139 sites (Fig. S1) for 2016-2020 across 157 

India was acquired from the CPCB CAAQMS (Continuous Ambient Air Quality Monitoring 158 

Stations) portal (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing). The data 159 

was further quality controlled by removing the outliers, constant values, and sites having less 160 

than 60 % data during the analysis period. Details of the surface observations are explained in 161 

Singh et al. (2020). 162 

2.1.4 Land use land cover data 163 

The high-resolution (50 m × 50 m) LULC data mapped with level-III classification for 18 major 164 

categories (NRSC, 2012) was obtained from the BHUVAN geo-platform (https://bhuvan-165 

app1.nrsc.gov.in/thematic/thematic/index.php) of the Indian Space Research Organisation 166 

(ISRO). To quantify the changes over urban, crop and forest areas, the OMI and TROPOMI 167 

NO2 at urban grids (category 1), cropland (category 2 to 5) and forestland (category 7 to 10) 168 

were extracted for further analysis. In order to match the OMI and TROPOMI grid resolution 169 

with the Indian LULC, the dominant LULC was considered within the OMI and TROPOMI 170 

grid. Supplementary Fig. S2 shows the high-resolution LULC data used in this study for 171 

cropland, forestland, and urban areas separately. Urban areas were further divided into four 172 

sizes as 10-50 km2, 50-100 km2, 100-200 km2 and greater than 200 km2 to study the change in 173 

NO2 with respect to the size of the urban agglomeration.  174 

2.1.5 VIIRS fire counts 175 

The VIIRS aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides 176 

daily global fire count at a 375 m × 375 m spatial resolution (Schroeder et al., 2014; Li et al., 177 

2018). The fire count data over India during the analysis period from 2016 to 2020 was obtained 178 

from the FIRMS (Fire Information for Resource Management System) web portal 179 

(https://firms.modaps.eosdis.nasa.gov/download/). The fire count data was gridded at 10 km × 180 

10 km for each year by summing of fire counts falling on each spatially overlapping grid. The 181 

burnt area was calculated from the fire counts by multiplying with the VIIRS grid size (Prosperi 182 

et al., 2020).  183 

2.1.6 Population data 184 

The gridded population density (people per hectare, pph) data for 2020 has been taken from 185 

Worldpop (2017). Worldpop estimates the population density at approximately 100 m × 100 m 186 

(near equator) by disaggregating census data for population mapping using random forest 187 
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estimation technique using remotely sensed and ancillary data. Details of the pollution mapping 188 

methodology can be found in Stevens et al. (2015).  189 

2.2 Analysis methodology 190 

The change in the NO2 levels for each analysis period has been calculated by subtracting the 191 

BAU NO2 from LDN NO2. We calculate the percentage change (D) using the following 192 

equation 193 

𝐷 =
(𝐿𝐷𝑁 − 𝐵𝐴𝑈 )

𝐵𝐴𝑈
× 100 194 

The analysis was done over the whole of India as well as over the separate considered regions 195 

and selected LULC categories using open-source Geographic Information System (QGIS). 196 

3 Result and Discussion 197 

3.1 Fire count anomalies during the lockdown  198 

It is well known that meteorological factors (e.g. wind, temperature, radiation etc) can affect 199 

the NO2 concentration as well as biogenic emissions (Guenther et al., 2012). In the case of the 200 

present study, recent work  (e.g. Singh et al., 2020; Navinya et al., 2020; Sharma et al., 2020) 201 

has shown that meteorological conditions remained relatively consistent over recent years 202 

during the dates of the lockdown period. Therefore, we assume that the changes observed 203 

during the lockdown were due to the change in the emissions. Moreover, we have assumed no 204 

change in biogenic emissions because of similar meteorological conditions during the 205 

lockdown period. Long-term satellite-derived fire counts suggest that Indian fire activities 206 

typically peak during March-May (Sahu et al., 2015), predominantly over the north, central 207 

and north-east regions (Venkataraman et al., 2006; Ghude et al., 2013). However, the spatial 208 

and temporal distribution of fire events is largely heterogeneous (Sahu et al., 2015) meaning 209 

an abrupt increase or decrease in fire activity could have a significant impact on NO2 levels 210 

over anomalous regions during the lockdown. 211 

An investigation of fire counts during the 2020 lockdown (LDN analysis period), when 212 

compared with the corresponding 2016-2020 average, highlights a substantial decrease over 213 

the eastern part of central India and an increase over the western part of central India and north-214 

east. In Fig. 1a widespread fire activity (counts of 10-50) is shown across India such as the 215 

central region (Madhya Pradesh, Chhattisgarh, Odisha), parts of Andhra Pradesh, the Western 216 

Ghats in Maharashtra and north-east region (Assam, Meghalaya, Tripura, Mizoram and 217 
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Manipur). The fire anomaly during the lockdown (Fig. 1b) shows positive fire counts (5-20) 218 

over the north-east region, west of Madhya Pradesh in central India and scattered locations in 219 

South India. The negative fire anomalies (-20 to -5) observed over the central region 220 

(Chhattisgarh and Odisha) suggests a decrease in fire activity during the 2020 lockdown period. 221 

To minimise the impact of fire emission in our analysis, we have considered the grids with zero 222 

fire anomaly to assess the changes in NO2 during the lockdown. 223 

 224 

Fig. 1 Spatial distribution of the 10 km × 10 km gridded VIIRS fire counts. (a) Average fire 225 

counts during the analysis period (March 25th - May 3rd, 2016-2020). (b) Gridded fire 226 

anomaly during the lockdown in 2020. 227 

3.2 VCDtrop NO2 over India during lockdown period 228 

The spatial distribution of VCDtrop NO2 is largely determined by local emission sources; 229 

therefore NO2 hotspots are found over urban regions, thermal power plants and major industrial 230 

corridors. For the Indian subcontinent, maximum NO2 is observed during winter to pre-231 

monsoon (Dec-May) and minimum NO2 during the monsoon (Jun-Sep). Region-specific peaks 232 

such as the winter-time peak (Dec-Jan) in the IGP is associated with anthropogenic emissions, 233 

or the summer-time peak (Mar-Apr) in central India and north-east India is associated with 234 

enhanced biomass burning activities (Ghude et al., 2008; Ghude et al., 2013; Hilboll et al., 235 

2017). 236 
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 237 

Fig. 2 Spatial distribution of mean VCDtrop NO2 (molecules cm-2) during the analysis period 238 

(25th March - 3rd May) for (a) OMI NO2 during business as usual (BAU, 2016-2019), (b) OMI 239 

NO2 during the lockdown (LDN, 2020), (c) TROPOMI NO2 during BAU (2019) and, (d) 240 

TROPOMI NO2 during LDN (2020). 241 
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We compare the LDN mean VCDtrop NO2 with the BAU mean for OMI and TROPOMI. The 242 

spatial distribution of the BAU and LDN VCDtrop NO2 observed by OMI and TROPOMI is 243 

shown in Fig. 2 (a-d). The mean VCDtrop NO2 from the two instruments show similar spatial 244 

distributions during the analysis period for both LND and BAU. In BAU years, the NO2 245 

hotspots are seen over the large fossil-fuel-based thermal power plants (~1000 ×1013 molecules 246 

cm-2), urban areas (~400-700 ×1013 molecules cm-2) and industrial areas. Scattered sources are 247 

also present in western India, covering the industrial corridor of Gujarat and Mumbai, various 248 

locations of south India, and densely populated areas (e.g. IGP). The spatial distribution shows 249 

significant changes during the lockdown in 2020. The details of actual and percentage changes 250 

are discussed in the subsequent sections.  251 

3.3 Changes observed by OMI and TROPOMI  252 

There is a substantial reduction in VCDtrop NO2 between the LDN and BAU (Fig. 3a & c). A 253 

large reduction in the number of hotspots, mainly urban areas, is seen in both OMI and 254 

TROPOMI observations. However, hotspots due to coal-based power plants remain during the 255 

lockdown as electricity production was continued. Over the NO2 hotspots, there has been an 256 

absolute decrease of over 150 ×1013 molecules cm-2 (~250 ×1013 molecules cm-2 over 257 

megacities) detected by both OMI and TROPOMI. Background VCDtrop NO2 has typically 258 

reduced by approximately 30-100 ×1013 molecules cm-2 representing a percentage decrease of 259 

30-50 % (OMI) and 20-30 % (TROPOMI) in rural regions (Fig. 3b & d). For urban regions, 260 

both OMI and TROPOMI see a decrease of approximately 50 %, but reductions in smaller 261 

urban areas are clearly noticeable in the TROPOMI data, given its better spatial resolution. 262 

Both instruments observe an increase in VCDtrop NO2 in the north-eastern regions and moderate 263 

enhancement over the western and central regions. These enhancements are linked with the 264 

biomass burning activities during this period (Fig. 1). 265 

 266 

 267 
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 268 

Fig. 3 (a, c) Absolute change and (b, d) percentage change in VCDtrop NO2 during the analysis 269 

period for LDN year compared to BAU years as observed by OMI (left panels) and TROPOMI 270 

(right panels). 271 

 272 
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3.4 The change observed over different land use 273 

Anthropogenic NOx emissions are typically more localised in urban and industrial centres, 274 

while biogenic sources (e.g. soil) are more important in rural regions. OBB activities peak in 275 

March-April (Sahu et al., 2015) and represent more sporadic sources. As the lockdown is 276 

expected to have reduced urban anthropogenic NOx sources (as shown in Fig. 3), it is important 277 

to assess the lockdown impact over the rural regions such as cropland and forestland as well.. 278 

In this section, we estimate the changes in VCDtrop NO2 over different land-types such as 279 

cropland, forestland, and urban areas (Fig. S2). To minimise the impact of OBB emissions in 280 

our analysis, we exclude grids with fire anomalies (Fig. 1) and those containing thermal power 281 

plants (Fig. S2d). However, absolute separation is not possible due to regional, and long-range 282 

transportation from nearby grids. 283 

3.4.1 Changes over cropland and forestland 284 

The changes in VCDtrop NO2 observed by OMI and TROPOMI over the cropland (Fig. S2a) in 285 

different regions of India are shown in Fig. 4a & 4b and Table S1. A decline in VCDtrop NO2 286 

has been observed over croplands in all regions except for the north-east. A higher percentage 287 

decline was observed over IGP and south regions by both the satellites. While VCDtrop NO2 288 

has decreased, prominent enhancements have been observed over the north-east and few grids 289 

in central and north-west regions. These enhancements can be attributed to the impact of nearby 290 

forest grids (Fig. 1). The observed changes over the forestland (Fig. 2.c) over different regions 291 

of India have been shown in Fig. 4(c, d) and Table S1. The average VCDtrop NO2 has declined 292 

over forestland in all the regions except for the north-east where VCDtrop NO2 was enhanced 293 

due to the positive fire anomaly (Fig. 1) during the analysis period. It can be noted that although 294 

we have taken the grids with zero fire anomaly, the effect of a nearby grid exhibiting positive 295 

fire anomaly cannot be ignored due to atmospheric dispersion and mixing. The inter-296 

comparison of the changes observed by two satellites suggests that OMI data indicates a larger 297 

reduction in VCDtrop NO2 than TROPOMI in most of the regions. 298 

 299 
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 300 

Fig. 4 Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for 301 

different regions shown as (a) violin plot of the absolute change over cropland, (b) percentage 302 

change over cropland, (c) violin plot of the absolute change over forestland, and (d) percentage 303 

change over forestland. A violin plot is a combination of a box plot and a kernel density 304 

estimation (KDE) plot. KDE is a non-parametric way to estimate the probability density 305 

function (PDF). The red lines in the violin plot show the interquartile range; the blue line 306 

shows the median value; the yellow star shows the mean value. The vertical lines in the bar 307 

plot show the standard deviation The abbreviations NWest and NEast are for north-west and 308 

north-east regions, respectively.   309 

 310 

3.4.2 Changes over urban regions 311 

Next, we analysed the changes in VCDtrop NO2 over the urban areas (Fig. S2b) in different 312 

regions of India. The calculated actual and percentage changes observed by OMI and 313 

TROPOMI are shown in Fig. 5 and in Table S1. The mean changes observed by OMI (in units 314 

×1013 molecules cm-2 (and  %)) were -54 ± 48 (-22 ± 11 %) for the central region, -33 ± 26 (-315 

14 ± 11 %) for the north-west, -110 ± 44 (30 ± 10 %) for IGP, -55 ± 37 (-25 ± 13 %) for the 316 

south, -92 ± 37 (-28 ± 6 %) for the north and 3±28 (2 ± 16 %) for the north-east. Similarly, the 317 

mean changes observed by TROPOMI (in the same units) were -65 ± 63 (-22 ± 15 %) for the 318 

central region, -74 ± 56 (-26 ± 14 %) for the north-west, -68 ± 46 (-23 ± 13 %) for IGP, -67 ± 319 

49 (-26 ± 11 %) for the south, -43 ± 17 (-23 ± 8 %) for the north and 20±19 (16 ± 15 %) for 320 

the north-east. The changes observed over urban areas are larger than those observed over the 321 

forest and croplands. In contrast to the cropland and forestland, TROPOMI observed a larger 322 

reduction in VCDtrop NO2 than OMI in most of the regions. Densely populated IGP with the 323 

largest urban agglomeration shows the maximum change in VCDtrop NO2 followed by the 324 

central and north-west regions. The VCDtrop NO2 over the urban areas in the north-east region 325 
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is likely to be influenced by the nearby forest fires through atmospheric dispersion and mixing 326 

resulting in the enhancement of VCDtrop NO2 over the urban grids. 327 

 328 

Fig. 5  Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for 329 

different regions shown as (a) Violin plot of the absolute change over urban areas, (b) 330 

percentage change over the urban area, (c) violin plot of the observed change over different 331 

sized urban areas, and (d) percentage change over different sized urban areas. 332 

We have also analysed the change in the VCDtrop NO2 over urban areas of different sizes. We 333 

have taken the urban areas of sizes more than 10 km2 and grouped them into four bins of size 334 

10-50 km2, 50-100 km2, 100-200 km2, and greater than 200 km2. We then calculate the changes 335 

observed for all the cities filling into the respective bins. Fig. 5 (c & d) show the absolute and 336 

percentage change in VCDtrop NO2, as observed by OMI and TROPOMI, respectively. A 337 

significant reduction of 50-150 ×1013 molecules cm-2 (20-40 %) was observed over the urban 338 

area of different sizes. The actual reduction in VCDtrop NO2 is greater for the larger urban area 339 

with peak reductions for the urban area bin (> 200 km2) for both OMI and TROPOMI.  340 

 341 

 342 

3.5 Inter-comparison of changes observed by OMI, TROPOMI and surface 343 

observation 344 

Fig. 6 (a,b) shows the relationship of OMI and TROPOMI NO2 with surface NO2 for the BAU 345 

and LDN periods, respectively. During BAU, there are reasonable positive correlations 346 

between the satellite instruments and the surface sites (OMI: 0.44, TROPOMI: 0.47). In LDN, 347 
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these correlations drop to 0.3 and 0.23, respectively, potentially linked with the primary 348 

reduction in urban NO2 levels. We also determined the correlation between satellite and 349 

surface-observed changes during the lockdown (Fig. 6c), finding values of 0.23 (OMI) and 350 

0.36 (TROPOMI). This indicates that the lockdown NO2 reductions appear to be present in 351 

both measurement types, providing us with confidence in the observed changes detected in this 352 

study. 353 

 354 

Fig. 6 Scatterplots between surface and satellite observed NO2 for (a) business as usual 355 

(BAU) and (b) lockdown (LDN). Panel (c) shows a scatterplot of observed absolute change 356 

(LDN-BAU) in surface and satellite NO2. 357 

 358 

The LND NO2 percentage change, observed by surface and spatially co-located satellite 359 

measurements is shown in Figure 7 for various Indian regions. For this comparison, the number 360 

of available CPCB surface monitoring stations were 17, 15, 81, 25, and 1 for central, north-361 

west, IGP, south and north-east regions (north region data not available), respectively. Most of 362 

the CPCB stations are in urban areas, so our results reflect changes in predominantly urban-363 

sourced NO2. At all surface sites in all regions, there was a percentage reduction greater than 364 

20 % (Fig. 7). Satellite observations show a similar trend except for the north-east region where 365 

enhancements are due to forest fires. Both OMI and TROPMI observed the highest reduction 366 

(~50 %) over IGP. A smaller average reduction of ~20 % over central India might be due to 367 

the aggregate effect of power plants, forest fires and prevalent biomass burning activities 368 

during this season. While the effect of forest fires can be observed in the column NO2, its effect 369 

on the surface NO2 is minimal. For the central, IGP and south regions, the mean percentage 370 

change observed by the surface monitoring station is comparable to that observed by the 371 

satellites. 372 
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 373 

 374 

Fig. 7 (a) Boxplot showing the percentage change between LDN and BAU in NO2 levels 375 

observed by ground and satellite measurements at CPCB monitoring locations in different 376 

regions. (b) Barchart showing the percentage change in NO2 levels observed at megacities in 377 

India for the same measurements as panel (a). The vertical line in the barchart is the standard 378 

deviation. 379 

 380 

We have intercompared the percentage change in NO2 observed at the surface and by satellite 381 

over the major Indian cities (i.e. New Delhi, Chennai, Mumbai, Bangalore, Ahmedabad, 382 

Kolkata, and Hyderabad, Fig. 7b). A significant reduction in the range of ~25-75 % is observed, 383 

consistent in all observational sources used in this study. A similar reduction observed by the 384 

satellites over the cities in other parts of the world has been reported (Tobías et al., 2020; 385 

Naeger and Murphy, 2020; Kanniah et al., 2020; Huang and Sun, 2020). The satellites observe 386 

the largest reduction over Delhi and smallest over Kolkata. While the observed decline is 387 

comparable for cities, Ahmedabad and Kolkata showed smaller declines than observed by 388 

ground measurements. Also, the reduction observed at the surface has a larger spatial 389 

variability than the one observed from the space. This is potentially linked to the influence of 390 

the local emissions which could not be detected by the space-based instruments because of 391 

relatively large satellite footprints. The results of percentage change observed by OMI are 392 

consistent with the change reported by Pathakoti et al. (2020), although Siddiqui et al. (2020) 393 

reported a higher decline of NO2 using TROPOMI. This is because we computed the changes 394 

between lockdown and BAU during the same period of the year whereas Siddiqui et al. (2020) 395 

estimated the changes between the pre-lockdown NO2 and the lockdown NO2 which includes 396 
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the seasonal component of NO2. We have also analysed the changes in VCDtrop NO2 observed 397 

by both OMI and TROPOMI for the other major cities (Guttikunda et al., 2019), as shown in 398 

Fig. S3. A reduction of over 20 % was observed in most of the cities except for a few in the 399 

north-east and central India. Cities showing enhancement or smaller reductions reflect the 400 

enhanced fire activities in the north-east and central Indian regions. TROPOMI can capture the 401 

reduction over the cities near the fire-prone areas (e.g. Indore and Bhopal) because of its higher 402 

spatial resolution. 403 

 404 

3.6 Correlation of tropospheric columnar NO2 with the population density 405 

In this section, we examine the VCDtrop NO2 and population relationship for India except where 406 

fire anomalies or large thermal power plants existed. The scatter density plots between VCDtrop 407 

NO2 and population density for the BAU and LDN analysis period are shown in Fig. 8 for OMI 408 

and TROPOMI. The data were log-transformed to establish the log-log relationship as both 409 

data sets are not normally distributed. As the observed changes had negative values, this log 410 

transformation was obtained by adding a constant value which was later subtracted when 411 

plotting to display the corresponding NO2 values. Both OMI and TROPOMI NO2 show a 412 

similar relationship with the population density with correlations of ~0.7 during the LDN and 413 

BAU periods, suggesting a strong dependence upon the population (i.e. anthropogenic 414 

emissions). The slopes of the lines in Fig. 8 (a,b,d,e) show that VCDtrop NO2 follows a power-415 

law scaling with population density (Lamsal et al., 2013). During BAU, the VCDtrop NO2 416 

observed over a grid increased by factors of 2.2 and 1.73 for OMI and TROPOMI, respectively, 417 

with a ten-fold increase in the population density. The rate of increase of the VCDtrop NO2 418 

during LDN was 2.0 and 1.58 times for OMI and TROPOMI, respectively, which was lower 419 

than BAU. The correlation during the LDN period was marginally lower than the BAU period. 420 

This could be due to a larger reduction in the NO2 levels in the densely populated grids. The 421 

changes observed in the VCDtrop NO2 during the LDN (Fig. 8c & f) were negatively correlated 422 

(i.e. reduction was positively correlated) with the population density. The linear relation 423 

suggests an increase in the reduction with an increase in the population density, however, some 424 

grids exhibit enhancements in VCDtrop NO2 due to the local emissions. 425 
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 426 

Fig. 8. Scatter density plot between the VCDtrop NO2 (×1013 molecules cm-2) and population 427 

density (pph) for the analysis period in different years. (a) Business as usual (BAU, 2016-2019) 428 

observed by OMI; (b) lockdown (LDN, 2020) observed by OMI; (c) changes (LDN-BAU) 429 

observed by OMI; (d) BAU (2019) observed by TROPOMI; (e) LDN (2020) observed by 430 

TROPOMI; (f) LND-BAU changes observed by TROPOMI. The x and y axes are in log10 scale. 431 

The slope of the line is also shown in the log10 scale. 432 

4 Conclusions and discussion 433 

The changes in NO2 levels over India during the COVID-19 lockdown (25th March-3rd May 434 

2020) have been studied using satellite-based VCDtrop NO2 observed by OMI and TROPOMI, 435 

and surface NO2 concentrations obtained from CPCB. The changes between lockdown (LDN) 436 

and the same period during business as usual (BAU) years have been estimated over different 437 

land-use categories (e.g. urban, cropland, and forestland) across six geographical regions of 438 

India. Also, the changes observed from space and at the surface have been inter-compared and 439 

the correlation with the population density has been studied. 440 

Overall, a significant reduction in NO2 levels of up to ~70 % was observed over India during 441 

the lockdown as compared to the same period during BAU. The usual prominent NO2 hotspots 442 

observed by OMI and TROPOMI over urban agglomerations during BAU were barely 443 

noticeable during the lockdown. However, the coal-based thermal power plants continued to 444 

be major NO2 hotspots during the lockdown. Some of the largest reductions in NO2 were 445 

observed to be over the urban areas of the IGP region. The reduction observed for urban 446 
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agglomerations was over 150 ×1013 molecules cm-2 (~30 %), and even more for megacities 447 

showing a reduction of around 250 ×1013 molecules cm-2 (50 %). The reduction observed over 448 

the urban areas was linked with reduced traffic emissions due to travel restrictions for COVID 449 

containment. The reduction was also observed over rural regions. Average declines of NO2 in 450 

the ranges of 14-30 %, 8-28 % and 10-24 % were observed by OMI and 22-27 %, 6-18 % and 451 

3-21 % were observed by TROPOMI over the urban, cropland and forestland, respectively, in 452 

different regions of India. In contrast, an average enhancement over north-east India was 453 

observed due to positive fire anomalies during the lockdown. Although we have considered the 454 

grids with zero fire anomaly during the lockdown, the fire emissions can still contribute to the 455 

enhancement of NO2 levels over grids with no fire activity because of horizontal transport. 456 

The observed changes in VCDtrop NO2 were found to be spatially positively correlated with 457 

surface NO2 concentrations indicating that the lockdown NO2 changes appear to be present in 458 

both measurement types. The TROPOMI NO2 showed a better correlation with surface NO2 459 

and was more sensitive to the changes than the OMI because of the finer resolution. Therefore, 460 

TROPOMI can provide a better estimate of NO2 associated with fine-scale heterogeneous 461 

emissions. Also, VCDtrop NO2 was found to exhibit a good correlation with the population 462 

density, suggesting a strong dependence upon the population and hence the anthropogenic 463 

emissions. The changes observed in the VCDtrop NO2 during the lockdown were negatively 464 

correlated (i.e. reduction was positively correlated) with the population density suggesting a 465 

larger reduction for the densely populated cities. However, the influence of local emissions can 466 

be different in different cities.  467 

The analysis presented in this work shows a significant change in NO2 levels across India. The 468 

observed reductions can be linked with the control measures taken to prevent the spread of the 469 

COVID-19 that restricted the movement of the people resulting in a significant reduction in 470 

anthropogenic emissions. As an important message to policymakers, this study indicates the 471 

level of reduction in NO2 that is possible if dramatic reductions in key emission sectors such 472 

as road traffic, were incorporated into air quality management strategies.  473 

5 Data availability.  474 

The tropospheric columnar NO2 data for TROPOMI and OMI are available at Google earth-475 

engine (https://developers.google.com/earth-engine/) and NASA’s Giovanni 476 

(https://giovanni.gsfc.nasa.gov/giovanni/) respectively. Surface measured NO2 data across 477 

India are available at CPCB site (https://app.cpcbccr.com/ccr/). VIIRS fire count data is 478 
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available at FIRMS web portal (https://firms.modaps.eosdis.nasa.gov/). India Population data 479 

used in this study is available at the https://www.worldpop.org/. The LULC data for India is 480 

available at the Bhuvan, (https://bhuvan.nrsc.gov.in/) Indian Geo-Platform of Indian Space 481 

Research Organisation. 482 
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